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Abstract

Servin and Matthews [17] proposed looking for associations be-
tween phenotypes and both typed and untyped SNPs, by using a ref-
erence panel to infer the alleles of the untyped SNPs. Since then, a
number of GWA studies have reported p-values for both typed and un-
typed SNPs. However, results of Almeida et al [1] indicate that using
imputed genotype data can lead to increased type I error. We dis-
cuss possible causes of inflated type I error from using imputed data
and propose methodology designed for conducting GWAS studies with
imputed genotypes.

1 Introduction

A primary focus of genetics is the identification of the genetic variants causing
variation in a particular phenotype of interest, such as height, susceptibil-
ity to diabetes, or drug sensitivity. The earliest discoveries of such genetic
variants were made by linkage analyses–studies which compared genotypes
within the same family. However, such studies failed to discover variants
accounting for the genetic basis of complex diseases such as diabetes. This
led geneticists to suspect that the genetic component of complex diseases
were distributed among many genes with small effects on disease suscepti-
bility. As Risch and Merikangas noted in their seminal paper [16], it would
be very difficult to discover such small-effect variants with linkage studies;
however, it could be much more feasible to discover such variants by carrying
out association studies on unrelated individuals.
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Indeed, Risch and Merikangas anticipated the introduction of the genome-
wide association (GWA) study. In a GWA study, the genotypes of possibly
unrelated case and control subjects are compared to find associations between
phenotypes and genetic variants: single-nucleotide polymorphisms (SNPs) or
less commonly, copy-number variations [4]. Such associations can help nar-
row the search for the true causative variants: due to the strong correlation
between variants located close to one another on a chromosome (linkage
disequilibrium), a causative variant will induce associations between nearby
variants and the phenotype. That said, not all putative associations found
in GWA studies are necessarily induced by linkage disequilibrium with a
causative variant: many could be caused by population stratification, sam-
pling biases, or false positives [14]. Despite these shortcomings, researchers
have suceeded in using GWA studies to uncover interesting genetic variants
involved in important diseases, including type I diabetes and Crohn’s disease
[22].

A major component to the cost-effectiveness of GWA studies is the fact
that interesting discoveries can be made by sequencing a relatively small sub-
set of the subjects’ genomes. Thus GWA studies typicially rely on tag-SNP
chips which allow them to cheaply sequence on the order of 300,000 sites in
the genome. These tag-SNP sites are chosen to exploit the block patterns
found in human genetic variation. As discovered in the HapMap project,
5-15 kilobase blocks of alleles, or haplotype blocks, tend to be coinherited–
and the diversity of haplotype blocks in a given population can be quite low
[9]. Meanwhile, the tag SNPs are chosen to optimally distinguish common
haplotypes for each block. Therefore, causative variants included in a com-
mon haplotype will likely induce an association between the tag SNPs chosen
for that block.

Interestingly, though, due to the availability of population-level SNP and
whole-genome data provided by sequencing efforts such as HapMap and the
1000 genomes project, it is possible to accurately impute many additional
SNPs of a subject from their genotyped SNPs. Servin and Matthews [17]
proposed a statistical framework to find associations between the pheno-
types and the imputed SNPs in addition to the typed SNPs, which could
possibly lead to more discoveries. Almeida et al. [1] investigated the re-
liability of results obtained from imputed SNPs. Using case-control data
from a type I diabetes study, they compared p-values obtained from a set of
genotyped SNPs with p-values obtained from imputed values from the same
SNPs. They found that less than half of the imputation-based p-values below
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the threshold of 10−5 had corresponding genotype-based p-values below the
threshold, and concluded that the use of imputed SNPs leads to an inflated
type I error rate. Nevertheless, a number of recent meta-analyses [6][11] have
used imputed SNPs.

Since Sevin and Matthews first proposed the analysis of imputed SNPs,
a number of algorithms for genotype imputation have been developed. The
most recent algorithms can automatically find boundaries of haplotype blocks,
as well as automatically perform phasing on both reference panel data and
case/control data. Marchini and Howie [13] provide a detailed review of the
most popular algorithms.

1.1 Statistical Evaluation

An extensive body of frequentist statistical literature applies to GWA stud-
ies using only genotyped SNPs [24]. Chiefly, there exist two major method-
ologies for multiple testing which can be applied to interpret the p-values
obtained from genotyped data: the Bonferroni procedure, which controls the
the family-wise error rate (FWER) and the Benjamini-Hochberg (BH) pro-
cedure, which controls the false discovery rate (FDR) [20]. But while the
majority of GWA studies do use marginal association tests for the individual
SNPs, whether genotyped or imputed, most do not bother to apply either
multiple testing procedure, instead reporting p-values below a prespecified
threshold, e.g. 10−5.

A major reason for this practice is that the unmodified Bonferonni and
BH procedure are overly severe when dealing with large numbers of highly
correlated test statistics. Lin [12] and Dudbridge [5] have suggested using
permutation-test based modifications to the Bonferonni or BH procedure
which ameliorate the effect of high correlations on statistical power. Storey
and Tibshriani [20] also propose a permutation-test based procedure to con-
trol false discovery rate, which is theoretically conservative under “weak de-
pendence” conditions. We go into more detail about these modified Bonfer-
onni and BH procedures in Section 2.

But moreover, as Ziegler et al note, neither the control of FWER nor FDR
“overcome the fundamental problem that formal statistical testing often is
not the primary aim in a GWA...[which is] to know whether a SNP is worthy
of further investigation...”

Indeed, even supposing that such frequentist procedures are theoretically
effective for detecting associations, there is the additional issue that such
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theoretical properties depend on a “sparse effects” assumption in which all
uninteresting SNPs have zero association with the phenotype. Yet this as-
sumption is most definitely violated in practice: recall that any SNPs in
linkage disequilibrium with a causative variant would have association with
the phenotype will formally be considered non-null features. Thus neither
frequentist procedure is guaranteed to control the number of such SNPs re-
ported. This is a minor issue if such SNPs are close to the causative SNP,
but Reich et al [15] find that within the European population regions of de-
tectible linkage disequilibrium routinely extend to 160 kilobases around an
SNP. Given the effort required to hunt for a causative variant in a 5 kb region,
one would surely consider an SNP which is 160 kb away from a causative vari-
ant to be uninteresting; yet the established framework for multiple testing
makes no special provision to exclude such hits.

For these and other reasons, many statisticians have proposed abandoning
single-marker analysis altogether, advocating regression [7] or other machine
learning-based approaches, or Bayesian inference [17]. Such alternative ap-
proaches generally have a shorter history than the body of frequentist work:
significance testing for high-dimensional regression is currently an extremely
active area of research, with many new approaches proposed within the last
two years [3][10][21]. Bayesian modelling approaches, though already quite
complicated, still have enormous room to grow, including incorporation of
population structure [18].

While both acknowledging the known disadvantages of single-marker-
based frequentist analysis and the promise of alternative methodologies to
GWA studies, we will consider the possible use of the multiple-testing frame-
work on both genotyped and imputed SNP data in the rest of the paper.

As we mentioned, a major shortcoming of the current multiple testing
framework is the fact that it fails to formally discriminate between SNPs
strongly associated with the phenotype and SNPs very weakly associated
with the phenotype. A second major shortcoming of the current body of
frequentist methodology is the lack of a framework for dealing with imputed
data.

However, we feel that both of these shortcomings can be overcome, and
in this paper, we will discuss possible ways to do so. If, indeed, a satisfactory
frequentist testing procedure can be developed which overcomes these short-
comings while maintaining an adequate power, the use of such a procedure
in GWA studies would yield an important benefit: a metric to gauge the
reliability of putative associations. Researchers would be able to use these
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frequentist measures to inform their decisions on whether or not to follow up
on the SNPs found by a particular study or meta-analysis.

The first shortcoming of the frequentist approach, which is its failing to
distinguish between strong and weak effects, can be addressed in a number of
ways. One approach, proposed by Wager [23] in an unpublished paper, is to
define an “irrelevance coefficient” which penalizes features with small effects,
and to control the average irrelevance coefficient of the reported features
analogously to how the BH procedure controls the average proportion of
false discoveries within the reported features. For reasons of convenience, we
take a simpler approach, which is to redefine a null feature to be one with a
possibly nonzero effect which falls below a threshold. The effect of this on
existing procedures is to modify the method of computing p-values.

Under this new perspective, a Type I error corresponds to misclassifying
a weak effect as a strong effect. This corresponds more closely to scientific
realities, in which the discovery of a weakly associated SNP is not much
preferable to the discovery of an unassociated SNP. Existing procedures will
continue to control the Type I error given the modified method of computing
p-values when using genotyped data. However, an increased Type I error
rate (in the form of increased FWER or increased FDR) can still occur if the
Bonferroni or BH procedure are used on imptued data.

In this project, we explore population-level phenomenona which could
lead to failures of the Bonferroni or BH method are naively applied to im-
puted SNPs; additionally, we suggest a novel statistical procedure designed
specifically for carrying out hypothesis testing with imputed data, which
continues to incorporate the threshold-based definition of a null hypothesis.

2 Testing of associations in genotyped data

Let S = {s1, . . . , sM} be a set of biallelic SNPs of interest, and let us fix
a reference haplotype. Let (Z,X(1), X(2)) be random variables representing
a phenotype Z taking values {0, 1} and two haplotypes X(1), X(2) for indi-
viduals in a population, where X i,(j) is the value of the SNP si in the jth
haplotype; X i,(j) = 0 if the SNP has the same allele as the reference.

We obtain data for L cases and L controls in the following manner. We
sample the cases as iid draws from the population conditional on Z = 1, and
the controls as iid draws conditional on Z = 0. Given this sampling, we ob-
tain genotypesX

(1)
1 , X

(2)
2 , . . . , X

(1)
L , X

(1)
L for controls andX

(1)
L+1, X

(2)
L+1, . . . , X

(1)
2L , X

(2)
2L
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for cases. These genotypes could variant calling or phasing errors, but we
will assume that such errors affect cases and controls in the same way.

Given this data, we compute for each SNP si the total minor allele count
for cases Ti and the total minor allele count for controls Ui,

Ui =

L0∑
k=1

X
i,(1)
k +X

i,(2)
k

Ti =
L∑

k=L0+1

X
i,(1)
k +X

i,(2)
k

Given this, we compute the empirical log-odds ratio θ̂i for the ith SNP:

θ̂i = log(Ti)− log(2L1 − Ti) + log(2L0 − Ui)− log(Ui),

an estimate of the true log-odds ratio θi, and the empirical variance[?] of the
estimate:

Vi =
1

Ui
+

1

2L0 − Ui
+

1

Ti
+

1

2L1 − Ti
Now we set a threshold τ for “small-effect” SNPs, e.g. τ = 0.05. For low

τ , SNPs with odds ratios between approximately 1− τ and 1 + τ will being
classified as “small-effect”. Setting τ = 0 recovers the standard paradigm of
hypothesis testing where null SNPs have odds ratios of exactly 1. A type I
error corresponds to reporting such a “small-effect” SNP.

Given only a specification of τ , we can compute the raw p-values to be
used in the multiple testing procedure as

Pi = 2− 2Φ

(
(θ̂i − τ)+√

Vi

)

where (x)+ = xI(x > 0) and Φ is the normal cumulative distribution func-
tion.

After obtaining the raw p-values, any of the multiple testing procedures
[12] [5] [20] can be applied to assess the statistical significance of the findings.

In the paper we will mainly focus on the use of the original Benjamini-
Hochberg procedure [2]:

BH procedure
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1. Fix a false discovery rate threshold q

2. Given p-values p1, . . . , pM , sort them in ascending order:

p(1) ≤ p(2) ≤ . . . ≤ p(M)

3. Compute t1, . . . , tM by ti = M
i
p(i)

4. Let j be the largest index such that tj ≤ q

5. Let pc1 , . . . , pcj be the j smallest p-values. Report the SNPs sc1 , . . . , scj .

Let V be the number of null SNPs reported, and R the total number of null
SNPs reported. Then the false discovery rate (FDR) is E[V/R], where the
expectation is taken over the sampling distribution of the data. The BH
procedure has the property of controls the false discovery rate, i.e.

E

[
V

R

]
≤ q

3 Naive Testing of Imputed Data

Now we consider what could go wrong if the procedure outlined in section 2 is
applied to imputed data. We modify the setup of section 1 by supposing that
a reference panel is available for the full set of SNPs S, but that only a subset
Stag of the SNPs are observed for the case and control data: without loss of
generality, let s1, . . . , sN be the observed SNPs. Here we are assuming that
the observed genotypes are correctly phased: again, this is an assumption
made for the sake of discussion, and in reality there would be additional
issues due to the uncertainty of phasing.

The reference panel gives rise to an imputation rule Q̂, a function of a
haplotype containing observed SNPs. While results may differ depending
on the particular imputation rule, we claim that the most widely used ap-
proaches [13] can be interpreted as methods to estimate the conditional joint
distribution of a haplotype in the reference population given its observed
elements

Q̂(X(j)|X1,(j), . . . , XN,(j)) ≈ Pr[X(j)|X1,(j), . . . , XN,(j)]

In fact, an idealized imputation rule would replicate the distribution pre-
cisely, while a “good” imputation rule would differ slightly from the true
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conditional distribution. However, as we will demonstrate, even an ideal-
ized imputation rule can lead to type I error due to differences between the
reference population and the case or control populations.

Given such an imputation rule, Guan and Stephens [8] describe proce-
dures to generate either Bayes factors or likelihood-ratio-based test statistics
which take into account the uncertainty of the imputation. They also con-
clude that in the Bayesian framework, similar performance can be obtained
by using the posterior mean of the conditional distribution. However, re-
cent studies [6][11] suggest that the current practice in meta-analyses is to
directly impute SNPs, apply quality filters, and then apply standard asso-
ciation tests as the imputed values were real data. Hence in the following,
we will consider using the posterior mean imputed values, and then naively
applying the procedure in section 2: we feel that such a procedure is only a
slight modification of current practice.

To elaborate, given the imputation rule Q̂, interpreted as an estimate
of the conditional probability distribution of the untyped SNPs in the ref-
erence population, we produce imputed haplotypes X̃

N+1,(j)
i , . . . , X̃

M,(j)
i for

each individual i and haloptype j, by

X̃
k,(j)
i = Q̂(Xk,(j) = 1|X1,(j)

i , . . . , X
N,(j)
i )

Then the procedure in section 1 is applied, as if the imputed haplotype X̃(j)

was originally observed.
The question we now consider is: under what conditions will this naive

protocol lead to an increased type I error, in the form of either increased
FWER or increased FDR?

Remark. Recall that in this context, an increased type I error means mis-
classifying an SNP with small effect (that is, with absolute log-odds less than
τ) as an SNP with non-small effect. If τ = 0, corresponding to the classical
definition of null hypothesis, the question has a trivial answer, since for any
SNP associated with the phenotype, all SNPs in linkage disequilibrium with
the SNP will also be associated with the phenotype, and hence be considered
non-null. The only source of increased type I errors is if an SNP independent
of the phenotype has a different imputed-value distribution between cases
and controls. Yet, in order for the SNP to have a different imputed-value
distribution, there must exist at least one other SNP must be considered to
be in LD with the null SNP (according to the imputation rule Q̂) which has
an association with the phenotype. Yet, in reality, it is not possible for there

8



to exist any SNP associated to the null SNP which is associated with the
phenotype. Therefore, under the classical definition of null hypoth-
esis, increased type I error is only possible when the imputation
rule Q̂ erroneously attributes dependence between two independent
SNPs. But some population-genetics assumptions would make the problem
of failing to capture independence relationships a practical non-issue. It is
generally realistic to assume that the reference population contains the case
and control populations as subsets, and furthermore, that the reference pop-
ulation is more “diverse.” In particular, we would assume that any pair of
SNPs which are independent in the case or control population are indepen-
dent in the reference population. Supposing this is the case, then the risk
for increased type I error is mitigated if the imputation algorithm captures
the haplotype block structure accurately: a task which many algorithms can
accomplish fairly well [19]. It is important to note, though, that for τ > 0,
the problem of controlling type I error becomes much more challenging, and
even an idealized imputation rule can lead to increased type I error.

Given the threshold-based definition of null SNPs, we note the following
possible causes of increased type I error.

1. Miscalled SNPs. Miscalled variants in the typed SNPs could lead to
incorrectly imputed posterior means in the untyped SNPs. Almeida et
al [1] noted that filtering for variant call quality improved the agree-
ment between imputed p-values and p-values obtained from genotyped
data.

2. Inaccuracies in imputation rule relative to reference. A low sample
size for the reference population limits the accuracy of the derived
imputation rule, especially if haplotypes common in either the case or
control but rare in the reference population are not included in the
reference panel. If two SNPs are weakly asssociated in Q̂ but strongly
associated in the reference population, this not lead to increased type
I errors, since weak associations in the imputation rule tend to lead to
imputed allele sums being similar in cases vs controls. Increased type I
error could more likely occur if two SNPs strongly associated in Q̂ are
in reality weakly associated. Suppose the imputation rule contains a
strong association between a typed SNP ss strongly associated with a
phenotype and an SNP sw very weakly associated with the phenotype,
but in the control and/or case population, ss is only weakly associated
with sw. Then the difference in case counts of ss and control counts of
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ss would lead to a significant difference in imputed sums of sw in the
cases vs controls, when in reality the ratios of sums in cases vs controls
is much closer to 1.

3. Mismatch between the reference and study population. Even supposing
the imputation rule is quite faithful to the reference population, there
may be a mismatch between the reference population and study pop-
ulation from which cases and controls are drawn. If the reference pop-
ulation contains a strong association between a typed SNP ss strongly
associated with a phenotype and an SNP sw very weakly associated
with the phenotype, but in the control and/or case population, ss is
only weakly associated with sw, this could lead to increased type I
error, for the same reasons as mentioned immediately above.

4. Population-level causes. Even with a reference panel derived from the
same population as the controls, and an idealized imputation rule, in-
creased type I errors could still occur. See next subsection.

Before we move on for a more detailed discussion of population-level causes,
we remark on a counter-intuitive aspect of the problem. Note carefully that
an inadequate sample size does not appear on the list for possible reasons of
increased type I error. This is because frequentist procedures automatically
account for the increased variance due to low sample size–that is, until the
sample size begins to cause violations to crucial assumptions such as nor-
mality of the test statistics. However, since the procedures do not account
for possible errors due to imputation, type I error for imputed SNPs may,
indeed, increase dramatically as sample sizes increase. This is because the
only way for a type I error to occur is for the erroneous signals in the imputed
SNPs to gain sufficient strength to overcome the p-value threshold used.

3.1 Population-level causes of increased type I error

Suppose that the reference and control population are the same, and the
imputation rule Q̂ captures the true conditional distribution of haplotypes
in the control population.

We provide a scenario to illustrate how a type I error can still occur.
Consider a haplotype block with 5 SNPs, labeled A, B, C, D, E (Fig .1) Only
B, C, and D have strong associations with the phenotype. Note that while
in the figure, E appears to have an odds ratio of zero, this is only due to
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the discreteness of the example: realistically, in a large population of cases
and controls, it would have true odds ratio close but not equal to zero. A
reference panel provides the joint distribution of all five SNPs. However,
only A, B, and C are genotyped for cases and controls. The distribution
of haplotypes within the haplotype block for the control population is very
similar to the distribution for the reference population.

	   	   	   	   	  A 	   	  B 	   	  C 	   	  D 	   	  E	  
Control 	   	   	   	  0 	   	  0 	   	  0 	   	  0 	   	  0	  

	   	   	   	   	  0 	   	  0 	   	  0 	   	  0 	   	  0	  
	   	   	   	   	  0 	   	  0 	   	  0 	   	  0 	   	  0	  
	   	   	   	   	  0 	   	  0 	   	  0 	   	  0 	   	  0	  
	   	   	   	   	  0 	   	  1 	   	  1 	   	  0 	   	  1	  
	   	   	   	   	  0 	   	  1 	   	  1 	   	  0 	   	  1	  
	   	   	   	   	  0 	   	  1 	   	  1 	   	  0 	   	  1	  
	   	   	   	   	  0 	   	  1 	   	  1 	   	  1 	   	  0	  

	  
Case	   	   	   	   	  0 	   	  0 	   	  0 	   	  0 	   	  0	  

	   	   	   	   	  0 	   	  0 	   	  0 	   	  0 	   	  0	  
	   	   	   	   	  0 	   	  0 	   	  0 	   	  0 	   	  0	  
	   	   	   	   	  0 	   	  1 	   	  1 	   	  0 	   	  1	  
	   	   	   	   	  0 	   	  1 	   	  1 	   	  0 	   	  1	  
	   	   	   	   	  0 	   	  1 	   	  1 	   	  0 	   	  1	  
	   	   	   	   	  0 	   	  1 	   	  1 	   	  1 	   	  0	  
	   	   	   	   	  0 	   	  1 	   	  1 	   	  1 	   	  0	  

	  
True	  log-‐odds	  ra4o	   	  0 	   	  0.51	   	  0.51	   	  0.84	   	  0	  
	  

Typed	   Untyped	  

Figure 1: True distribution of case and control population

Given a sufficiently large sample size, the proportions of the haplotypes
in the case and control samples will closely match the population-level dis-
tributions shown in Fig 1. But when this is the case, the estimated log-odds
ratio for E will be much larger than than the true log-odds ratio, leading to
a type I error: this is illustrated in Figure 2.

We can generalize this simple example to understand a class of patterns
which would give rise to type I errors for imputed data which are intrinsic
to population-level distributions of haplotypes for the cases and controls. In
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	   	   	   	   	  A 	   	  B 	   	  C 	   	  D 	   	  E	  
Control 	   	   	   	  0 	   	  0 	   	  0 	   	  0.0 	   	  0.0	  
(Imputed) 	   	   	  0 	   	  0 	   	  0 	   	  0.0 	   	  0.0	  

	   	   	   	   	  0 	   	  0 	   	  0 	   	  0.0 	   	  0.0	  
	   	   	   	   	  0 	   	  0 	   	  0 	   	  0.0 	   	  0.0	  
	   	   	   	   	  0 	   	  1 	   	  1 	   	  0.25	   	  0.75	  
	   	   	   	   	  0 	   	  1 	   	  1 	   	  0.25	   	  0.75	  
	   	   	   	   	  0 	   	  1 	   	  1 	   	  0.25	   	  0.75	  
	   	   	   	   	  0 	   	  1 	   	  1 	   	  0.25	   	  0.75	  

	  
Case	   	   	   	   	  0 	   	  0 	   	  0 	   	  0.0 	   	  0.0	  
(Imputed) 	   	   	  0 	   	  0 	   	  0 	   	  0.0 	   	  0.0	  

	   	   	   	   	  0 	   	  0 	   	  0 	   	  0.0 	   	  0.0	  
	   	   	   	   	  0 	   	  1 	   	  1 	   	  0.25	   	  0.75	  
	   	   	   	   	  0 	   	  1 	   	  1 	   	  0.25	   	  0.75	  
	   	   	   	   	  0 	   	  1 	   	  1 	   	  0.25	   	  0.75	  
	   	   	   	   	  0 	   	  1 	   	  1 	   	  0.25	   	  0.75	  
	   	   	   	   	  0 	   	  1 	   	  1 	   	  0.25	   	  0.75	  

	  
True	  log-‐odds	  ra4o	   	  0 	   	  0.51	   	  0.51	   	  0.84	   	  0	  
Es4mated	  log-‐OR 	   	  0 	   	  0.51	   	  0.51	   	  0.25	   	  0.38	  

	   	   	   	   	   	   	   	   	   	   	   	   	  Type	  I	  error	  

Typed	   Untyped	  

Figure 2: Estimated log-odds ratios of imputed SNPs

the example, there are three haplotypes, which we call α, β, γ:

α :(00000)

β :(01110)

γ :(01101)

Note that crucial to this example is the fact that β and γ are indistinguishable
given the typed SNPs, and that γ is much more rare than β in the control
population. Yet, γ is enriched in the case population, while β is not. A
possible mechanism is that the minor variant for SNP E, which is unique to
haplotype γ, is a causative variant for the phenotype. The final ingredient is
the fact that the minor variant for SNP D is unique to β. Otherwise, if SNP
D was also present in haplotype γ, while the SNP may not be causative, it
would still be associated with the phenotype, and still technically count as a
true positive.

We generalize the example to a class of population-level patterns leading
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to type I errors:
Pattern I

1. There exist two haplotypes β, γ for a given haplotype block, which are
indistinguishable given the typed SNPs.

2. The haplotype γ is enriched in either the case or control population,
while β is enriched in neither the cases nor controls.

3. The haplotype β contains minor variants not present in γ, nor any
other haplotype which is enriched in the case population.

4. The haplotype β is relatively common in the reference population, while
γ is rare.

This effect can persist even if there exist other haplotypes δ, ε etc. possibly
also containing SNPs associated with the phenotype, as long as the total
increase in rare haplotypes in the case population relative to the reference
population remains small relative to τ .

We suggest a plausible geneological mechanisms for how such haplotypes
β, γ could arise within a haplotype block in Figure 3. Initially, a common
ancestor ζ of both β and γ propagates. Both the β and γ haplotypes emerge;
but somehow, the β haplotype ends up occupying a large proportion of the
haplotypes descended from ζ. Crucially, the mutation associated with the γ
haplotype does not reappear, in a large fraction, in any of the β haplotypes.
Such a process could occur, in parallel, over all of the haplotype blocks in
the genome.

Still, the actual impact on type I error rates depends on the relative
fraction of haplotype blocks containing such β,γ haplotypes. It would be
interesting, and perhaps informative, to assess the likelihood of Pattern I
arising in a population genetics framework, in relation to the number of
typed SNPs. If the prospect is relatively unlikely given a decent number of
typed SNPs this would indicate less need for caution in testing imputed data.
All the same, we show in the next section that it is possible to get guaranteed
type I error control for imputed data.
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α	  	  	  	  (00000)	   α	  	  	  	  (00000)	   α	  	  	  	  (00000)	   α	  	  	  	  (00000)	   α	  	  	  	  (00000)	  
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Figure 3: Possible geneological mechanism for Pattern I

4 A nonparametric method for testing asso-

ciations in imputed data

The fundamental problem with naively applying a multiple testing method
to imputed data is that the implicit assumption that the imputation rule
captures the dependency structure of the cases and controls. When this
assumption is violated, there is no guarantee of type I control. However,
we can test the validity of this key assumption by paying an extra price:
genotyping a larger set of SNPs on a validation sample.

Using this idea, we develop a method for testing associations in imputed
data which can deal with all of the possible causes of failure listed in section
3: miscalled SNPs, inaccurate imputation rule, mismatch between reference
and control, and population-level causes.

14



4.1 Procedure

Let us continue with the setup of section 3. This time, in addition to col-
lecting a subset Stag on L individuals, we will sequence an additional Lval
individuals. From this validation sample, we genotype both Stag and an ad-
ditional set of validation SNPs Sval. The set of validation SNPs is randomly
selected from the set of SNPs of interest, minus the tag SNPs. That is, letting
Nv be the number of validation SNPs,

Sval = {sI1 , . . . , sINv
}

where I1, . . . , INv are selected uniformly at random without replacement from
N + 1, . . . ,M .

Our data is as follows:

• A reference panel, which yields an imputation rule Q̂.

• Phased genotypes for Stag from L cases and L controls

X
1,(1)
i , X

1,(1)
i , . . . , X

N,(1)
i , X

N,(2)
i

with i = 1, . . . , L for controls and i = L+ 1, . . . , 2L for cases.

• Phased genotypes for Stag and randomly selected validation SNPs Sval
from Lval cases and Lval controls

X
1,(1)
i , X

1,(1)
i , . . . , X

N,(1)
i , X

N,(2)
i , X

I1,(1)
i , X

I1,(2)
i . . . , X

INv ,(1)
i , X

INv ,(2)
i

• Imputed genotypes for L cases and L controls, X̃
(j)
i for i = 1, . . . , 2L

and j = 1, 2.

Our procedure involves two control parameters, α1, α2, in addition to the
discovery threshold τ . We will make use of the assumption that the true
number of null SNPs is greater than the true number of alternative SNPs.

Procedure for Imputed Genotypes

1. Conduct the standard testing procedure for the tag SNPs on combined
sample of L+ Lval cases and L+ Lval controls as a separate analysis
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2. Obtain p values for validation SNPs

Pval = {pvalI1
, . . . , pvalINv

}

using the formula presented in section 2

3. (BH procedure for validation data) From the validation data, we will
obtain a set of presumed null SNPs. Apply original BH procedure[2]
with q = 0.5 to Pval. Define the set of presumed nulls

Sprenull = sJ1 , . . . , sJA

as the subset of validation SNPs accepted by the BH procedure.

4. Obtain imputed p values for the L cases and L controls p̃1, . . . , p̃M .

5. The set of imputed p values for Sprenull

P̃prenull = {p̃J1 , . . . , p̃JA}

will be used to estimate the distribution of the imputed p values of the
null SNPs.

6. Given P̃prenull and parameter α1, obtain a set of transformed imputed
p-values for the untyped SNPs Simputed = S \ Stag,

p̂i = L̂(p̃i)

for i = N + 1, . . . ,M (details in next section).

7. (BH procedure for main data) Apply the original BH procedure with
q = α2 to the transformed p values P̂ = {p̂N+1, . . . , p̂M}. Report the
SNPs rejected by the BH procedure for the main data.

This procedure will control the False Discovery Rate at level α, where α is a
function of α1, α2, L, Lval, and Nv and M −N , but independent of the data
generating mechanism. (details in following section).
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4.2 Rationale

We outline the strategy behind our procedure.
Given the complete data for all SNPs in Simputed, we would have a distribu-

tion of p-values for non-screening case and controls, pN+1, . . . , pM . However,
we have p-values for imputed SNPs derived from the imputation rule Q̂ for
L case and L controls, p̃N+1, . . . , p̃M .

Let I0 = {ι1, . . . , ιM0} be the true set of null SNPs in Simpute. If the
marginal distribution of p̃ιi were uniform, or stochastically dominated the
uniform distribution, then the existing frequentist approaches would cor-
rectly control the type I error. However, the problem is that due to errors
induced by imputation, the marginal distribution of p̃ιi may not stochasti-
cally dominate the uniform distribution. The crux of our proposed solution
is to estimate the aggregate distribution of p̃ιi across all null SNPs, and then
use this estimate to obtain transformed p-values p̂N+1, . . . , p̂M so that with
a high probability, the transformed p-values of the nulls p̂ι1 , . . . , p̂ιN0

satisfy

1

N0

N0∑
k=1

I{M0

M
p̂ιk < x} < x (1)

for all x ∈ [0, 1], where M0 is the number of null SNPs. Given (1) holds,
application of the original BH procedure[2] will control the false discovery
rate.

In order to obtain a sample of the null SNPs, we have to rely on an
independent set of screening p-values,

pvali1
, . . . , pvaliNv

obtained from the genotypes in the validation sample. Our goal is use these
p-values to correctly select null SNPs from the validation SNPs. Inclusion
of non-null SNPs in the set Sprenull of presumed nulls will drastically reduce
power. Thus we use the BH procedure with a high q to select presumed
null SNPs sJ1 , . . . , sJA . A subset of sJ1 , . . . , sJA are true nulls: sη1 , . . . , sηB ,
with p̃η1 ≤ · · · ≤ p̃ηB . If τ is small, then the joint distribution of η1, . . . , ηB
conditional on B is close to hypergeometric sampling from the set of nulls
I0.

Now condition on B, the number of null SNPs in the presumed nulls, and
the values of the imputed p-values p̃ι1 , . . . , p̃ιM0

. Given η1, . . . , ηB, define the
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quantities

Di =

M0∑
j=1

I(p̃ιj ≤ p̃ηi)

These Di are the ranks of the p̃η1 , . . . , p̃ηB within the null SNPs.
Under the hypergeometric sampling assumption, we provide upper bounds

ti for i = 1, . . . , A so that

Pr[
Di

M0

> ti for some 1 ≤ i ≤ b|B = A] < α1

where α1 is an error control parameter. [Author’s note: Work in progress.]
For each SNP in Simputed, also define

Ri =
B∑
j=1

I(p̃i ≤ p̃ηj)

While Ri is unknown, we can compute an upper bound

R̂i =
A∑
k=1

I(p̃i ≤ p̃Jk)

The following observation motivates our procedure. Although η1, . . . , ηB
are unknown, at the very least, we know that Ri ≤ R̂i. If we knew the values
of Di, then we could transform all of the imputed p-values by

p̂′i =
DRi

M0

and then we would have the property

1

M0

M0∑
i=1

I(p̂′ιi ≤ x) ≤ x

for all x ∈ [0, 1], which means that type I error could be controlled by us-
ing the transformed p-values p̂′i. However, we only have approximate upper
bounds di for the unknown quantities Di/M0 and Ri for R̂i. The transformed
p-values thus take the form

p̂i = dRi
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which satisfy the property (1), conditional on the event E that the upper
bounds di hold: i.e., Di < di for all i = 1, . . . , B.

Applying the BH(q) algorithm to the transformed p-values with threshold
α2 yields a false discovery rate of

FDR = E

[
V

R

]
= E

[
V

R
|E
]

Pr[E] + E

[
V

R
|Ec

]
Pr[Ec]

≤ E

[
V

R
|E
]

+ Pr[Ec]

≤ α2 + α1

5 Simulations

5.1 Synthetic data

Any serious algorithm for imputing genotypes must be quite complex, since it
has to estimate the haplotype block structure of the population. Due to this,
running and analyzing the imputation algorithm becomes one of the main
technical challenges of running simulation studies of genotype imputation.

However, if we use a model in which the haplotype block structure is
already known, and in which independence between blocks is enforced, the
optimal imputation rule ends up being simple. This allows us to easily test
various methodologies for drawing inferences from imputed data, at the ex-
pense of using a somewhat unrealistic model. Nevertheless, we can explore
the relative impacts of the two of the problems listed in section 3: miscalled
SNPs and inaccurate imputation (due to having a small reference panel sam-
ple), in addition to exploring the effects of sample size and number of tag
SNPs used.

5.1.1 Population Generation

We consider a population of haploid individuals: the genotype X of each
individual consists of Kb blocks of length Lb; i.e., each haplotype has a total
of M = Kb ∗ Lb binary bases. Let Hj be the haplotype of the individual
in the jth block. An individual is sampled by independently drawing a
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haplotype H1, . . . , HKbfrom each block. In fact, there exist Npop possibly
distinct haplotypes for each block, Hj

1 , . . . , H
j
Npop

, and the haplotype Hj for
an individual for the jth block is drawn uniformly from thoseNpop haplotypes.
Let πR(g) be the probability mass function for a genotype g generated in this
manner.

The distribution of haplotypes per block is generated by duplication-
mutation process applied to a fixed population over several generations.
In the mth generation, the jth haplotype block contains Npop haplotypes
Hj,m

1 , . . . , Hj,m
Npop

. Intially, all haplotypes are identically zero. However, at
each iteration,

1. Each allele in each haplotype is mutated (toggled) with probability pmut

2. Hj,m+1 is chosen from Hj,m
1 , . . . , Hj,m

Npop
uniformly at random. This al-

lows mutated haplotypes to be duplicated.

This process repeats for Ngen generations.
To generate the phenotype distribution, we randomly create a coefficient

vector β and a constant β0.

1. Let Mcause be the number of causative variants.

2. Intialize β to be a vector of length M consisting of all zeros. Randomly
select a subset of the indices of β of size Mcause. Populate those entries
with iid standard normal variates.

3. Manually choose a value for β0: this controls how commonly the phe-
notype appears.

The vector β and constant β0 define the distributions π0
1 and π0

0 by the
following

π0
1(g) ∝ πR(g)

eβ
T g+β0

1 + eβT g+β0

π0
0(g) ∝ πR(g)

e−β
T g+−β0

1 + e−βT g+−β0

Due to the computational difficulty of computing log-odds ratios from π0
1

and π0
0, we generate the actual case and control distributions π1 and π0 as

follows:
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• Sample a large number Ncase,control of individuals from πR. Define π′R
as the uniform distribution over these individuals.

• Define π0 by

π0
1(g) ∝ π′R(g)

eβ
T g+β0

1 + eβT g+β0

• Define π1 by

π0
1(g) ∝ π′R(g)

eβ
T g+β0

1 + eβT g+β0

This allows us to compute the true log-odds ratios exactly.
To simulated the effect of miscalled SNPs, we define modified distribu-

tions π0,x, π0,x. To sample g from πi,x, draw g′ from πi, but then randomly
toggle each allele in g′ with probability x to obtain g.

5.1.2 Simulated Experiments

A reference panel is given consisting of either the complete set of haplotypes
for each block (perfect imputation), or a subsample of Nref haplotypes for
each block. Let η1, . . . , ηNref

denote the indices of the subsampled haplotypes:
hence, the reference panel consists of Xj

η1
, . . . , Xj

ηNref
for each block.

Tag SNPs are selected based on the reference panel. For each block, we
select Ktag tag SNPs. The selection is done via a greedy algorithm.

Given a sample size L and a miscall probability pmis, we generate com-
plete genotypes X1, . . . , XL cases iid from π1,pmis

and XL+1, . . . , X2L controls
iid from π0,pmis

. This yields complete p-values p1, . . . , pM for each SNP. Mean-
while, using the tag SNPs, imputed genotypes X̃1, . . . , X̃2L are obtained. The
imputation rule is as follows.

Imputation Rule

• Iterate for each block j = 1, . . . , Kb:

• Let t1, . . . , tKtag be the tag SNPs for the jth block. These tag SNPs
partition the reference into D classes, C1, . . . , CD, in the sense that
hjk, h

j
l are in the same class if and only if hjk matches hjL exactly on the

set of tage SNPs. Collect class-specific means m1, . . . ,mD by averaging,

µo =
1

|Co|
∑
h∈Co

h
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Also define the global mean,

µ =
1

Npop

Npop∑
k=1

hjk

• Determine the class that the ith genotype Xi falls in. If the Xi falls in
class Co, impute the jth block of Xi by µ. If Xi does not fall in any
of the classes C1, . . . , CD, impute the non-tag SNP entries of the jth
block of Xi by µ.

From imputed genotypes X̃1, . . . , X̃2L, obtain imputed p-values p̃1, . . . , p̃M .
We apply the original BH procedure to the imputed p-values and assess

the true false discovery proportion. Also, for different values of Lval and Nv,
we apply our proposed testing procedure for imputed data (Section 3).

5.1.3 Results

Initial parameters
We generate the population of haplotypes with Kb = 100, Lb = 10,

Npop = 50, Ngen = 30, pmut = .1. The coefficient vector for the phenotype
is generated with Mcause = 2 nonzero entries, both drawn from N(0,

√
10),

and β0 is chosen so that the proportion of cases in the reference population
is 0.2. The case and control populations are generated with Nlarge = 1000.
In our code, impute.R, we set the random seed to 1 for purposes of fixing
the reference, case and control. We do not control the random seed for the
rest of the simulation.

Figure 4(i) displays the true absolute log odds ratios of the SNPs, when
sorted. Setting τ = 0.1 results in M1 = 141 non-null SNPs. Figure 4 (ii)
illustrate the relationship between imputation accuracy and the number of
tag SNPs when the reference data is used to impute itself. Figure 4 (iii)
displays the minor allele frequency of the reference population.

Using the full reference panel with no errors, and 4 tag SNPs per block,
we have significant discordance between true log odds ratios and asymptotic
imputed data log odds ratios (Figure 5(i)), with 63 systematically induced
false positives. However, we will see that given a realistic sample size, the
false positive rate may be much lower.

In one run, we use L = 10000 cases and the same number of controls,
with 4 tag SNPs per block. Figures 5(ii) and (iii) show the false discovery
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Figure 4: Left (i). True absolute log odds ratios of SNPs (sorted) Center
(ii) Imputation error vs number of tag SNPs per haplotype Block. Error
is measured by average squared error. Right (iii) Minor allele frequency in
reference

proportion (fdp) curves for genotyped data and imputed data, respectively.
Notable is the fact that the fdp curve for imputed data is rougher, a trend
that becomes increasingly evident when the sample size increases.

We set Lval = 1000, and false discovery rate threshold to q = 0.2. We
compare the following procedures

• BH(q) on the complete genotyped data

• BH(q) on the data imputed using the given tag SNPs

• Our method on the imputed data

The following table shows the results of a few repeated runs. Recall R is the
number of rejections, V the number of false rejections, and fdp = V/R.
Run Full data R V fdp Imputed R V fdp Our method R V fdp

1 22 0 0 11 0 0 8 0 0
2 20 0 0 9 0 0 7 0 0
3 20 0 0 10 0 0 8 0 0

In summary, neither the naive method nor our method makes any false re-
jections, though our method has less power.

Increased sample size
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Figure 5: Left (i). True log odds ratios of SNPs vs. asymptotic imputed
log odds ratios, 4 tag SNPS/block. Green circles=true positives, violet
crosses=false negatives, red crosses=false positives. Center (ii) False dis-
covery proportion of genotyped data, L = 1000 Right (iii) False discovery
proportion of imputed data, L = 1000, 4 tag SNPS/block

Increasing the sample size a hundred fold to L = 1000000 and Lval =
10000, problems start to occur for the naive method. However, our method
continues to be quite conservative.
Run Full data R V fdp Imputed R V fdp Our method R V fdp

1 111 0 0 29 6 0.21 13 1 0.07
2 112 0 0 29 6 0.21 13 1 0.07
3 111 0 0 28 6 0.21 14 1 0.07

Notice that at this sample size, the sampling error has little influence com-
pared to the systematic bias induced by the imputation procedure.

Incomplete reference panel
Return to L = 10000 and Lval = 1000, but this time construct the refer-

ence panel by a subsample of size 25. Systematically induced false positives
increase to 75 while asymptotically detectible true positives decrease to 19.
Power for both the naive method drops slightly, more for our method. Yet
no false rejections are made.
Run Full data R V fdp Imputed R V fdp Our method R V fdp

1 25 0 0 7 0 0 6 0 0
2 25 0 0 6 0 0 6 0 0
3 30 0 0 7 0 0 0 0 0

24



Incomplete reference, more tag SNPs
Here is a scenario in which the effects of Pattern I manifest. Return to

L = 10000 and Lval = 1000, and As in the last section, our reference panel
is a subsample of size 25 of the true reference panel, but now increase the
number of tag SNPs to 6 per block.
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Figure 6: Left (i). True log odds ratios of SNPs vs. asymptotic imputed
log odds ratios, 6 tag SNPS/block. Green circles=true positives, violet
crosses=false negatives, red crosses=false positives. Center (ii) False dis-
covery proportion of genotyped data, L = 1000 Right (iii) False discovery
proportion of imputed data, L = 1000, 6 tag SNPS/block

The large-sample number of false positives due to imputation errors re-
duces to 19, and the number of true positives detectible in the imputation
data increases to 44. Yet surprisingly, the false positive rates rise for the
naive method.
Run Full data R V fdp Imputed R V fdp Our method R V fdp

1 21 0 0 7 6 0.85 0 0 0
2 30 0 0 11 9 0.81 0 0 0
3 25 0 0 9 8 0.88 0 0 0
This phenomenon can be explained, however. We have removed addi-

tional tag SNPs from the list of SNPs to be be tested and thus depleted the
data of many strong signals. On the other hand, having more tag SNPs,
up to a certain point, increases the prospect of Pattern I (§3.1) occurring,
since Pattern I depends on the existence of two haplotypes which are in-
distinguishable given the typed SNPs, but which are distinguished from the
other haplotypes in the population. Figure 6 provides a comparison with
with Figure 5.
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While the naive method is plagued with almost as many false discoveries
as true ones, our method controls the type I error by making no rejections.

6 Discussion

Our simulations show that in certain conditions, the naive method for testing
imputed data can have some degree of robustness against incomplete refer-
ence data. However, rather counterintuitively, a large sample size, and a
relatively large number of tag SNPs can lead to dramatically increased type
I error rates for naive testing of associations based on imputed data.

Given the difficulty of gauging one’s vulnerability to increased type I
error from using imputed data, it would be prudent to obtain some form
of additional validation data to check for the prevalence of systematic error
induced by imputation. Our method is a formal way to do this– it has some
degree of guaranteed type I error control, but it requires huge sample sizes
to be truly effective, and is often overconservative to the extreme in common
situations.

It remains for future work to develop a method which can control type I
error for imputed data, and yet remain competitive against the naive methods
in situations where excessive caution is unwarranted.
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Y. Aulchenko, T. Lumley, A. Köttgen, R. S. Vasan, F. Rivadeneira,
G. Eiriksdottir, X. Guo, D. E. Arking, G. F. Mitchell, F. U. S. Mattace-
Raso, A. V. Smith, K. Taylor, R. B. Scharpf, S.-J. Hwang, E. J. G. Si-
jbrands, J. Bis, T. B. Harris, S. K. Ganesh, C. J. O’Donnell, A. Hofman,
J. I. Rotter, J. Coresh, E. J. Benjamin, A. G. Uitterlinden, G. Heiss,
C. S. Fox, J. C. M. Witteman, E. Boerwinkle, T. J. Wang, V. Gudna-
son, M. G. Larson, A. Chakravarti, B. M. Psaty, and C. M. van Duijn.
Genome-wide association study of blood pressure and hypertension. Na-
ture genetics, 41(6):677–87, June 2009.

[12] D. Y. Lin. An efficient Monte Carlo approach to assessing statisti-
cal significance in genomic studies. Bioinformatics (Oxford, England),
21(6):781–7, Mar. 2005.

[13] J. Marchini and B. Howie. Genotype imputation for genome-wide asso-
ciation studies. Nature reviews. Genetics, 11(7):499–511, July 2010.

27



[14] T. a. Pearson and T. a. Manolio. How to interpret a genome-wide asso-
ciation study. JAMA : the journal of the American Medical Association,
299(11):1335–44, Mar. 2008.

[15] D. E. Reich, M. Cargill, S. Bolk, J. Ireland, P. C. Sabeti, D. J. Richter,
T. Lavery, R. Kouyoumjian, S. F. Farhadian, R. Ward, and E. S. Lander.
Linkage disequilibrium in the human genome. Nature, 411(6834):199–
204, May 2001.

[16] N. Risch and K. Merikangas. The future of genetic studies of complex
human diseases. Science (New York, N.Y.), 273(5281):1516–7, Sept.
1996.

[17] B. Servin and M. Stephens. Imputation-based analysis of associa-
tion studies: candidate regions and quantitative traits. PLoS genetics,
3(7):e114, July 2007.

[18] M. Stephens and D. J. Balding. Bayesian statistical methods for genetic
association studies. Nature reviews. Genetics, 10(10):681–90, Oct. 2009.

[19] M. Stephens and P. Scheet. Accounting for decay of linkage disequi-
librium in haplotype inference and missing-data imputation. American
journal of human genetics, 76(3):449–62, Mar. 2005.

[20] J. D. Storey and R. Tibshirani. Statistical significance for genomewide
studies. Proceedings of the National Academy of Sciences of the United
States of America, 100(16):9440–5, Aug. 2003.

[21] J. Taylor, J. Loftus, R. J. Tibshirani, and M. E. Sep. Tests in Adaptive
Regression via the Kac-Rice Formula. (2):1–33, 2013.

[22] P. M. Visscher, M. a. Brown, M. I. McCarthy, and J. Yang. Five years
of GWAS discovery. American journal of human genetics, 90(1):7–24,
Jan. 2012.

[23] S. Wager. An Empirical Bayes Approach to Non-Sparse. pages 1–20,
2013.

[24] A. Ziegler, I. R. König, and J. R. Thompson. Biostatistical aspects
of genome-wide association studies. Biometrical journal. Biometrische
Zeitschrift, 50(1):8–28, Feb. 2008.

28


